

Solve each problem.

- 1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{6}$ of an hour. At this rate, how many hours would it take to fill the pool?
- 2) A snail going full speed was taking $\frac{1}{10}$ of a minute to move $\frac{1}{2}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- A pencil making machine took $\frac{1}{6}$ of a second to make enough pencils to fill $\frac{1}{4}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- 4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{5}$ bag of oranges. This amount of juice filled up $\frac{1}{9}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
- Robin spent $\frac{1}{9}$ of an hour playing on her phone. That used up $\frac{1}{8}$ of her battery. How long would she have to play on her phone to use the entire battery?
- While exercising John walked $\frac{1}{7}$ of a mile in $\frac{1}{5}$ of an hour. At this rate, how far will he have travelled after an hour?
- 7) A carpenter used $\frac{1}{10}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{4}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- 8) A chef used $\frac{1}{6}$ of a bag of potatoes to make $\frac{1}{2}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
- 9) A restaurant took $\frac{1}{3}$ of an hour to use $\frac{1}{7}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
- 10) A water hose had filled up $\frac{1}{9}$ of a pool after $\frac{1}{3}$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

- 1.
- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6. ____
- 7. _____
- 8. _____
- 9.
- 10.

Answer Key

Name:

Solve each problem.

- 1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{6}$ of an hour. At this rate, how many hours would it take to fill the pool?
- 2) A snail going full speed was taking $\frac{1}{10}$ of a minute to move $\frac{1}{2}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- A pencil making machine took $\frac{1}{6}$ of a second to make enough pencils to fill $\frac{1}{4}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- 4) A dejuicer was able to squeeze a pint of juice from $\frac{1}{5}$ bag of oranges. This amount of juice filled up $\frac{1}{9}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
- Robin spent $\frac{1}{9}$ of an hour playing on her phone. That used up $\frac{1}{8}$ of her battery. How long would she have to play on her phone to use the entire battery?
- While exercising John walked $\frac{1}{7}$ of a mile in $\frac{1}{5}$ of an hour. At this rate, how far will he have travelled after an hour?
- 7) A carpenter used $\frac{1}{10}$ of a box of nails while working on a birdhouse and was able to finish $\frac{1}{4}$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
- 8) A chef used $\frac{1}{6}$ of a bag of potatoes to make $\frac{1}{2}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
- 9) A restaurant took $\frac{1}{3}$ of an hour to use $\frac{1}{7}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
- 10) A water hose had filled up $\frac{1}{9}$ of a pool after $\frac{1}{3}$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

- $\frac{3}{6}$ hour
- $\frac{2}{10}$ minute
- $\frac{4}{6}$ second
- $1\frac{4}{5}$ bags
- $\frac{8}{9}$ hour
- $\frac{5}{7}$ mile
- 7. $\frac{4}{10}$ box
- $\frac{2}{6}$ bag
- $\frac{2}{3}$ hours
- $10. \qquad \frac{3}{9} \text{ hour}$